Peter Lee on November 23, 2009

November-23-09

1.
$$U(g) \stackrel{\sim}{\underset{pgw}{\rightleftharpoons}} M_{+} \otimes M_{-} \stackrel{\sim}{=} U(g_{+}) /_{+} \otimes U(g_{+}) /_{-}$$

2.
$$F = Forget$$
; $M \longrightarrow Vect$ with $M = Rep(U(g))$

$$F(M) = Hom_g(U(g), M)$$

$$F(1) \in M = F$$

3.
$$F(M) = Hom_g(M_+ \otimes M_-, M)$$

product; so if $g \in Q$, $\Delta g = g \otimes 1 + 1 \otimes g$. With $\Phi = 1$ the hoxagon is not satisfied as $e^{tr} + t^3 \neq e^{tr} + t^3$.

We will see that he braided monoidal structure on

M, induces a new coproduct on U(g)

Recall A tensor structure on a functor $F: E \to D$ between two monoidal categories

is a family of natural isomorphisms $F(X) \otimes F(Y) \xrightarrow{5xy} F(X \otimes Y)$

$$F(X) \otimes F(Y) \xrightarrow{J_{XY}} F(X \otimes Y)$$

$$J_{X \otimes Y, Z} \circ J_{X, Y} = J_{X, Y \circ Z} \circ J_{YZ}$$

$$J_{X, I} = J_{IX} = J_{IX} = J_{IX}$$

$$\left(\begin{array}{c} + \text{ an extra requirement} \\ \text{ related to the briding} \end{array}\right)$$

A tensor structure on $F = Forg \neq = Hom_g(M_{\bullet}M_{\bullet}, -)$: Let $V \in F(V)$, $W \in F(W)$, we now $J_{V,W} : F(V) \otimes F(W) \rightarrow F(V \otimes W)$

 $J_{V,W}(V \otimes V) : M_{+} \otimes M_{-} \longrightarrow \overline{V} \otimes W$ by

 $\mathcal{M}_{+}\otimes\mathcal{M}_{-}\stackrel{i_{+}\otimes i_{-}}{\longrightarrow} \mathcal{M}_{+}\otimes\mathcal{M}_{+}\otimes\mathcal{M}_{-})\xrightarrow{assc.} \mathcal{M}_{+}\otimes\mathcal{M}_{-})\xrightarrow{assc.} \mathcal{M}_{+}\otimes\mathcal{M}_{-})$ $\downarrow^{\vee\otimes\vee} \overline{\vee}\otimes\mathcal{N}$

1,01-17 (1,01,18 (1.81-) 1-

Define $j_{vw}(t) := \frac{(assoc.) \circ (18p81) \circ (assoc)}{u hat a pears in the def. of <math>J_{v,w} = 1 + \dots$

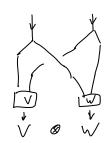
Then vaw 1 To, ~ (vaw) (j, v(h) (1, 8/2 48/2))

involide, so I's involide.

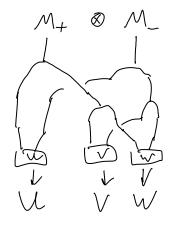
Cohorence (Pictorially)

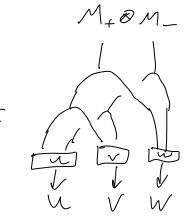
So M. M. M.

JVW (VOW) 13



Co hervice Juov, wo Ju, = Ju, vow o Jv, be comes;





Note:

by the Functoriallity of B.

· -- -- Q.E.D.